## Math 286 Course Content and Objectives

| COURSE CONTENT AND SCOPE <br> - Lecture: Outline the topics included in the lecture portion of the course (Outline reflects course description, all topics covered in class). |  | COURSE OBJECTIVES - Lecture:Upon successful completion of this course, the student will be able to...(Use action verbs - see Bloom's Taxonomy for 'action verbs requiring cognitive outcomes.') |
| :---: | :---: | :---: |
| Examples of partial differential equations (PDE's); classification of PDE's, conservation laws, diffusion, biological examples, vibrations and acoustics, quantum mechanics, heat flow, and Laplace's equation. | 18 | Derive the heat, wave, and Laplace's equation from physical principles as well as other PDE's of physical systems. |
| Unbounded domains: Cauchy problems (heat and wave equations), ill-posed problems, semi-infinite domains, Duhamel's principle, and Laplace and Fourier Transforms. | 18 | Solve the heat and wave equations on specified domains. This applies to such problems as cooling/heating of an object and string vibration. |
| Orthogonal expansions: Using Fourier Series to solve PDE's, orthogonal expansions in general, and SturmLiouville problems. | 18 | Apply Fourier series to solve a PDE. Applications include problems in signal processing such as the processing of analog data. |
| Bounded domains: Separation of variables, flux conditions, Laplace's equation, cooling of a sphere, diffusion in a disk, and sources on bounded domains. | 17 | Apply separation of variables to solve a PDE. Applications include problems in Quantum Mechanics such as the particle in a box. |
| Examples from the life sciences: Age-structured models, traveling wave fronts, and equilibria and stability. | 17 | Solve the transport equation. Applications include the 'traffic flow' model. |
| Final examination. | 2 | Final examination. |
| Total: <br> Total Lecture Hours In Section I Class Hours: | 90 90 |  |

